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Outline
Basic part:
- Motivation: dark matter and solar neutrino detection and PET
- GEM operation in gaseous He, Ar and Kr at cryogenic T
- Two-phase cryogenic detector in Kr, based on GEMs
Some details:
secondary effects in two-phase Kr, two-phase Kr + gas;
ionization coefficients; ion-induced signals; photon feedback
Summary
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Two-phase detectors
for solar neutrino and dark matter

Two-phase He detector for solar Two-phase Xe detectors for WIMP
neutrino detection: search: ZEPLIN II-IV:
Nevis Lab (Columbia Univ) & BNL UK Dark Matter Search Collaboration
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Medical applications:
two-phase Xe or Kr detector for PET

LXe
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- LXe is comparable to NaI (T]) in atomic
number, density and scintillation yield

- LXe price: $10.4/rad. length (2.6 cm)
which is comparable with B6O

- LKr price is much lower: $1.4/rad.length
(4.6 cm)

- Solving parallax problem



Principle of two-phase cryogenic avalanche detector
based on GEMs

- For solar neutrino and WIMP, primary ionization signal is weak
— Signal amplification, namely electron avalanching in pure noble gases

at cryogenic temperatures is needed

- Detection of scintillations in liguid is needed, to provide fast signal
coincidences in PET and to reject background in neutrino and WIMP detection
- Electron avalanching at low temperatures has a fundamental interest itself.
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1. First results from cryogenic avalanche detectors
based on GEMs, Buzulutskov et al. IEEE Trans. Nucl.
Sci. 50(2003)2491; E-print physics/0308010

2. Cryogenic avalanche detectors based on GEMs,
Bondar et al., NIM A 524(2004)130.



GEM operation in noble gases: previous results
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Gaseous cryogenic avalanche detector:
experimental setup
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Gain-voltage characteristics at cryogenic T
in He, Ar and Kr

He, 123K

Triple-GEM gain
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Rather high gains are reached in all the
gases studied. The maximum gain
exceeds 107 and few tens of thousands
in He and Ar and Kr, respectively.



Temperature dependence of gain
at constant voltage and constant gas density

Triple-GEM in He, Ar, Kr Single-GEM in Kr
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- In He, gain is independent of temperature, ruling out effect of organic

impurities on avalanche mechanism.
- In Ar and Kr, gain increases by a factor of 1.5-5, in 3 GEM, and 1.1-1.8, in

1GEM, when decreasing temperature — modification of avalanche mechanism?
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He: anode signals at cryogenic T, induced by X-rays

We do not observe any unusual
properties in the shape of anode pulses,
induced just by cryogenic temperatures.

T=295K
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; ; ; ; : ; ; : 50/”"’6000

S oomve o M4.00us A ChI S 3o.0mv Stainless steel cathode
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p =126 atm, N=7.5%10° cm3
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Stainless steel cathode
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He and Kr: anode signals at cryogenic T, at high gains

He, T =125 K

N=7.5*10 cm3
Gain~25000

Stainless steel cathode
X-ray tube with Re target

W 100mve 00us A Chl # 34.0mv

Kr, T =180 K
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N R X-ray tube with Mo target

- o mie00%




300

280

No charging-up effects at cryogenic T

T (K)
260 240

10° ¢

10° 3

10° b

Leakage current (pA)

10" L.

I I
solid: Ar, AV, =317V
open: He, AV __ =200V

220

3.4

3.6

3.8 4.0 4.2 4.4
1000/T (L/K)

o~exp(-E,/ kT)

2004Nov 17 ,seminar at BNL ,Alexei Buzulutskov

Gain

10° : . . . : :
' He g
| 3GEM &
3atm@22C
10' £ 4
: 144 K @
Current mode 8
3 E -
10° E o |
® 4 -1 2 ]
10° £ O 24kV, 0.9%10"s'mm™ 4
® + 30kV:1*10°s'mm? ]
O 40kV:8*10°s'mm”
ot 1 I I I ! A

100 120 140

160 180 200 220
AV ., (V)

240

12



Two-phase cryogenic avalanche detector:
experimental setup

Oxysorb
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- Liguefying starts when Kr
pressure drops below 1.5 atm

- Strong p- T dependence in two-
phase mode — monitoring pressure
fo measure temperature



Two-phase cryogenic avalanche detector:
experimental setup
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High-voltage divider and readout
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- Divider: three identical circuits
connected in parallel, each GEM
being connected to one of them:

- Protection against discharges
induced by ion feedback between
GEMs: if even one GEM breaks-
down, electrical potentials on
others do not increase.
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Two-phase Kr:
formation of liquid phase
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Cathode-GEMI capacitance as a function
of pressure during cooling/heating cycles

- Liguefying starts when Kr pressure drops below 1.5 atm
- Strong p-T dependence in two-phase mode
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Two-phase Kr:
electron emission from liquid into gas
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Anode current recorded in the
cathode gap as a function of the
electric field, induced by X-rays
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Anode pulse-height as a function of the

electric field in liguid Kr, induced by
beta-particles (gain@3.3kV=250)

- Electron emission from liguid into gas phase has threshold behavior

- Critical electric field > 1.5 kV/cm
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Two-phase Kr:
gain-voltage characteristics
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Gaseous Kr:

Change of slope at low T indicates
that the avalanche mechanism is
modified?

Two-phase Kr:

Electron avalanching in saturated
vapor does not differ from that of
normal gas in general:

- Gain and voltages are similar to

gaseous mode at equal gas densities

- Secondary processes at high gains
are more pronounced
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anode signals

Pulsed mode
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Two-phase Kr:

induced by B-particles from *0Sr
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The signal in two-phase mode is larger than in gaseous mode, because the
enerqy deposited by p-particle in the liguid is much larger than in the gas



Two-phase Kr: towards PET applications.
Anode signals induced by 0.51 MeV y-quanta
from 22Na in coincidences with BGO counter

: : : Puléeuheiéht
- GEM signal

Two-phase Kr
' 31‘391& %Q?ahznta " : . 051MeV j-quanta
e o : ~ AVI(GEM) =400V
AV(GEM) =400V _ SRR E(LKN) = 3.3KVierm
 E(LKr)=4kViem : j : =
Gain~200

- Triggered by GEM signal - No peak in pulse-height spectrum

- Almost no background from 0.51 MeV gammas, due to
- GEM-BGO signal delay is 1~2 us: domination of Compton scattering in

corresponds to electron drift in liguid and LKr.
gaseous Kr in the gap and between GEMs



Two-phase Kr:
analysis of GEM-BGO signal time spectra
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- Left edge of time histogram is defined mostly by LKr
layer thickness

- Fitting left edge by Gauss: getting time spread At

- At and t decreases with E due to increase of v

- Estimating LKr layer thickness: Ax = v At

-4 -3 -2 -1 0

Time difference (us)
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Two-phase Kr:
stability of operation
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- Relatively stable operation for 3 hours was observed, confirming possibility

for stable GEM operation in avalanche mode in saturated vapor

- Signal disappearance is correlated to drop of cathode-GEMI capacitance,

indicating disappearance of the liguid phase, and is due to not enough

temperature stability of the cryostat
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Two-phase Kr:
secondary effects and maximum gain

10" ¢
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3GEM
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550

- In pulse-counting mode, the maximum gain
does not exceed 1000,

- In current mode, secondary effects arise
at higher gains. They are not observed in
pulse-counting mode. Most probably they are
induced by ion backflow, which at high fluxes
might result in

a) ion feedback between GEMs (enhanced in
saturated vapor?)

b) charging-up of kapton in GEM holes
(enhanced in saturated vapor?)

¢) charging-up at phase interface (what
happens to electrons not emitted from
liguid?).

- Secondary effects might also be dependent
on liguid surface state (surface waves,
boiling) and electric field.

- Ways to increase the gain and suppress
secondary effects should be looked for.
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- In gaseous state: successtul

operation in Kr+He and Kr+Ar mixtures
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- In two-phase state: the basic idea is to

suppress boiling and ion feedback.

- However, in Kr+He cooling down to two-
phase state was not possible

- In Kr+Ar, cooling down to two-phase
state was possible at only small (~0.1atm)
Ar content

- In Kr+Ar, secondary effects seems to be
reduced, though the maximum gain did not
Increase.
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Estimation of ionization coefficients in dense noble gases
using GEMs with narrow holes

Parallel-plate approach:

1200

by tamgviiofe o bbb works well for hole diameter below
Sl S | - 40 um:
- 1. Gain of 1GEM configuration:
a3 G=-exp(ad).
2. ITonization (Townsend) coefficient:
- a/p=n6/ (pd)
{%clru} TS0 0 50 0 50 100 150 200

¥ Posiion () 3. Electric field: computed value is
Fig. 10, Electric lield computad along a line through the center of the holes, for dilferent hole diameaters, faken /'/7 fhe Ce” fe/,, 07( fhe hole:
E = 80 kV./cm at AV ;z,=500V.

See: Physics of multi-GEM structures,
Buzulutskov, NIM A 494(2002)148.
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Tonization coefficients:
high pressure versus low pressure

T T L
10° | curves: o /p (p<0.latm)
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1. In He and Ne, ionization coefficients

| are considerably larger at high pressures
1  than at low pressures.

1 2. In He and Ne: strong violation of E/p
opercHe 1 scaling.

« * 1wm] 3.InAr, Krand Xe: relatively good

R L =1 agreement between high and low pressure.
v

Impact ronization: ~p
Excitation

Associative ionization: ~p?
Deexcitation
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Tonization coefficients:
accounting for associative ionization

" points: o,/ p/ (1+Cp)

[ open: He, C=1.0atm™
10" | solid: Kr, C=0.05atm’”
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o, =a;+a,

aa/ai ~ p

(£, p) = [L+const- p]=* (&)
P

|

o _a
pd+Cp) p

Parameter C describes the contribution
of associative ionization:

C~1.0 atm for He and Ne,

¢<0.1 atm for Ar, Kr and Xe.
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Two-phase Kr:
ionization coefficients

I
Kr
o
1 ot
B
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©
—i
=z
- O gaseous: 295 K, 2.5 atm
3 A two-phase: 123 K, 1.32 atm |
B two-phase: 118 K, 0.84 atm
literature at p<0.1 atm
0.1 - L

60 70 80 90 100

E/N (107 Vem?)
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Important observations:

- Scaling of ionization coefficients
obtained at different pressures in two-
phase mode

- Larger ionization coefficients at
Jower T — modification of avalanche
mechanism?
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Gaseous mode:
ion backdrift, ion feedback and photon feedback effects

C2 +VG . . .
< ” - When C1 capacitor is off, the tail of
anode pulse becomes substantially longer
— aue to ion backdrift-induced signal: its
width corresponds to ion drift time between
Avalanche ﬁ I
GEM3 . GEMs
| - This would allow to estimate ion mobility
lon backdrift | =~ — at high densities and low T.
Y G T 1 See: Further studies of cryogenic avalanche
I
GEM2 | Q - detectors based on GEMs, Bondar et al.,
fon feedback | 1 Proceedings of Vienna Conf. on Instrum. 2004,
on teedbac NIM A (2004), in press.
v [ I
GEM1 - -
I =y
1

Photon feedback '\\T
Cathode l
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He: signals induced by ions
backdrifting in GEM3-GEM2 gap

T=295K
N=7.5*10° cm-3
Gain~30000
. A Cu cathode
@ 100mve Ops A Chi S 76.0mV. Capacitor in GEM3up is on

Ion backdrift-induced signal

T=295K

N=7.5*10% cm3
T BN Gain~30000
S 20.0mve __.:E_:___,\,,Hoiops_g Chi 7 112my Cu cathode

Capacitor in GEM3up is of f



Ar and He: signals induced by ions
backdrifting in GEM3-GEM2 gap

r .
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He: photon feedback at high gains,
at room T and with Cu cathode
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He: photon feedback using Cu cathode

T=124 K

N=7.5*10° cm3
Gain~25000

Stainless steel cathode

Photon feedback-induced signal

T=295K
N=7.5%10" cm3
R Gain~30000
ous-::x cm: s 76:.0mv5- Cu cathode




Ar: photon feedback enhancement at low T
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Conclusions

We have studied the performance of cryogenic avalanche detectors of
ionizing radiation based on GEM multipliers and operated in gaseous and
two-phase (liguid-gas) mode in pure He, Ar and Kr.

It was shown that GEM structures could successfully operate at
cryogenic T, down to 120 K, both in gaseous and two-phase
modes.

High gas gains, exceeding 10¥, were obtained at cryogenic T in
gaseous mode, in all noble gases studied. Electron avalanching at
cryogenic T, in the range of 120-300 K, has either weak, in He,
or moderate, in Ar and Kr, temperature dependence.

Stable avalanche mode of operation was observed in two-phase
mode, in Kr at gains below 1000, indicating on possibility of
long-term operation in avalanche mode in saturated vapor,
using GEMs.

In two-phase mode, signals induced by X-rays and gamma-
guanta and beta-particles were successfully recorded, in current
and pulse-counting mode, respectively.
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Outlook: physics of CAD

Physics of electron avalanching at low T:
- Ionization coefficients at low T

- Associative ionization at low T

- Avalanching in saturated vapor

- Electron and ion mobility at low T

Physics of two-phase media:

- Electron emission from liguid (solid) into gas phase
- Ion transport through phase interface

- Charging-up effects at phase interface

Physics of ion clusters at low T:

- Ion clustering
- Mobility of ion clusters
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Outlook: possible applications

- Two-phase cryogenic particle and X-ray detectors: in He and Ne,
for solar neutrino, and in Kr and Xe, for dark matter and PET/SPECT.

- High-pressure X-ray detectors in Xe and Kr, for mammography and
radiography.

- Neutron detectors in compressed He’, He acting as both a detection and
amplification medium.

- Sealed detectors.
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